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Abstract

Circular data arises in various fields including robotics, biology, geology and material sci-
ences. Modelling such data requires flexible distribution families on the hypertorus. Com-
mon choices are the von Mises and the wrapped normal distributions. In this work we
investigate the inverse stereographic normal distribution as an interesting and computa-
tionally appealing alternative. We demonstrate its flexibility and practical applicability by
fitting mixtures of shifted inverse stereographic normal distributions via gradient descent to
dihedral data of protein backbones characterizing the conformational landscape of folding.
Furthermore, we prove that the inverse stereographic normal distribution is unimodal if and
only if all eigenvalues of the covariance matrix are less than or equal to 0.5.

1 Introduction

Many relevant problems in the fields of biology, geology, material sciences, robotics and engineering involve
the study of circular random variables α1, . . . , αn ∈ [0, 2π[. Prominent examples are the torsion angles of a
protein backbone (Boomsma et al. (2008),Mardia et al. (2012)) or the angles describing the kinematics of a
robotic arm (e.g. see Denavit & Hartenberg (1955)). Formally, the domain of such data is referred to as the
hypertorus

Tn := S1 × · · · × S1︸ ︷︷ ︸
n

,

where S1 is the unit circle. The field of directional statistics provides a range of distribution families on Tn

(see Mardia & Jupp (2000) for an overview, or Ley & Verdebout (2018), Pewsey & García-Portugués (2020)
for more recent references). Note that we can identify Tn by [−π, π[n via polar coordinates. Reasonable
choices of modelling distributions should respect the topology of Tn in the sense that they satisfy periodic
boundary conditions on [−π, π[n.

Of specific interest are distributions that constitute a toroidal analogue to the normal distribution, given
its favourable properties such as flexibility, ”universal density approximation property” of Gaussian mixture
models (see Nguyen et al. (2020) Theorem 5), limit distribution in Central limit theorem, among others.
In this context, the von Mises distribution (first introduced by von Mises (1918)) and the wrapped normal
distribution (e.g. see Mardia & Jupp (2000) page 50-51) are commonly suggested.

The von Mises density in one dimension is given by

fµ,κ : [−π, π[ −→ R+

α 7→ 1
2πI0(κ) exp (κ cos (α− µ)) , (1)

where µ ∈ [−π, π[ is called mean direction, κ ≥ 0 the concentration and I0(κ) = 1
2π

∫ 2π

0 eκ cos(α) dα is the
modified Bessel function of the first kind and order 0. Generalizations of the von Mises distribution to
the bivariate case (Mardia (1975)) and higher dimensions (Mardia et al. (2008),Navarro et al. (2017)) have
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been investigated in literature, however a major drawback for many applications remains the intractable
normalization constant. For the one dimensional case, it was shown in Kent (1978) that the von Mises
distribution closely approximates the wrapped normal distribution (see Collett & Lewis (1981), Pewsey &
Jones (2005) for statistical considerations about discrimination of both distributions).

In general a probability density pw on [−π, π[n can be constructed from a probability density p : Rn −→ R+
by ”wrapping” it around the hypertorus in the following sense

pw : [−π, π[n −→ R+

α 7→
∑

j∈Zn

p(α+ 2πj).

In the case of p being the density of a normal distribution with mean µ ∈ Rn and covariance matrix Σ ∈ Rn×n,
we obtain the wrapped normal density

pwn
µ,Σ : [−π, π[n −→ R+

α 7→ (2π)− n
2 det (Σ)− 1

2
∑

j∈Zn

e− 1
2 (α−µ+2πj)T Σ−1(α−µ+2πj).

In any practical context the infinite sum is truncated by introducing some J ∈ N and summing over the set
J := {−J, · · · , J}n instead:

p̂wn
µ,Σ : [−π, π[n −→ R+

α 7→ (2π)− n
2 det (Σ)− 1

2
∑
j∈J

e− 1
2 (α−µ+2πj)T Σ−1(α−µ+2πj).

One drawback of the truncated wrapped normal distribution is the exponentially increasing computational
complexity in the number of dimensions n (since the number of terms in the sum is (2J + 1)n).

Selvitella (2019) suggested the inverse stereographic projection of normal distributions, termed inverse stere-
ographic normal distributions, as a further flexible alternative to the von Mises distribution. Beyond having
an easy tractable density in the multivariate case, the distribution was shown in Selvitella (2019) to have
many favorable statistical properties. Specifically, the inverse stereographic normal distribution is closed
under marginalization and conditioning, has asymptotic relations to the von Mises and wrapped normal
distributions and is the limit distribution in a toroidal analogue of the central limit theorem. Furthermore
Selvitella (2019) stated unimodality conditions for the inverse stereographic normal distributions in the one
dimensional case and demonstrated applications in one and two dimensions.

In this work we consider shifted versions of the inverse stereographic projection of zero centered normal
distributions, which we term shifted inverse stereographic normal distributions in reference to Selvitella
(2019). We demonstrate the flexibility and practical applicability of the distribution family by fitting mixtures
of shifted inverse stereographic normal distributions to non-trivial toroidal distributions in higher dimensions.
Furthermore we generalize the unimodality result of Selvitella (2019) for the mean-free case to arbitrary
dimensions.

We structured the article as follows: In section 2 we first formally introduce the inverse stereographic normal
distribution. We then present our main theoretical result identifying the parameter set of unimodality for
the inverse stereographic distribution. Finally we outline how mixtures of shifted inverse stereographic
normal distributions can be fitted by gradient descent, restricting learning via diagonal parametrization to
the subset of unimodality. Initial mean parameters are set by applying a clustering algorithm. In section 3 we
fit mixtures of inverse stereographic distributions to several data sets, including wind direction data, samples
from a special case of the bivariate von Mises distribution and torsion angle data of protein conformational
landscapes. Specifically, we quantitatively investigate the distribution learning for alanine tetrapeptide (6
torsion angles) and chignolin (18 torsion angles). The quality of the fit is evaluated in terms of the estimated
Kullback-Leibler divergence and visualized in TICA plots. We summarize our results and provide an outlook
for future work in section 4.
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Figure 1: The point P ̸= N on the circle (parametrized by angle α ∈ ]−π, π[) is mapped to the point Q on
the real line via the stereographic projection: The point Q is defined as the intersection of the real line with
the line crossing the pole N and point P . Note that the coordinates of Q are Q =

(
0, tan

(
α
2
))

.

2 Methods

2.1 Stereographic projection

The stereographic projection is a C1-diffeomorphism from the unit circle (except for the pole) onto the real
line. For the unit circle being parametrized by an angle α ∈ ]−π, π[, it is defined as

h : ]−π, π[ −→ R

α 7→ tan
(α

2

)
(2)

Geometrically, a point from the circle P ∈ S1 \ {(0, 1)}, parametrized by an angle α ∈ ]−π, π[, is mapped to
a point Q on the real line as follows: The point Q is defined as the intersection of the straight line g through
(0, 1) and P with the x-axis (see Figure 1).

2.2 Inverse stereographic normal distribution

By applying the mapping 2 component-wise, we obtain

hn : ]−π, π[n −→ Rn

(α1, . . . , αn) 7→
(

tan
(α1

2

)
, . . . , tan

(αn

2

))
.

Note that hn is a C1-diffeomorphism, with functional determinant given by
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det (Dhn
(α1, . . . , αn)) =

n∏
i=1

1
1 + cos (αi)

.

Let N (0,Σ) be the centered normal distribution with covariance matrix Σ ∈ Rn×n. Using the change of
variables theorem, we find the pushforward measure of N (0,Σ) under h−1

n to be

N (0,Σ) ◦ hn = C

n∏
i=1

(
1

1 + cos(αi)

)
e− 1

2 hn(α1,··· ,αn)T Σ−1 hn(α1,··· ,αn)dα1 · · · dαn, (3)

where
C = (2π)− n

2 det (Σ)− 1
2

is the normalization constant. In other words, mapping a N (0,Σ) distributed random variable to ]−π, π[n
via h−1

n results in a random variable distributed according to (3). We call the density in 3 the inverse
stereographic normal density.

We now define the shifted inverse stereographic normal density (SISND) by continuously extending the
density 3 to [−π, π[n and subtracting a shifting parameter in its argument.
Definition 1 (Shifted inverse stereographic normal density). For n ∈ N let

Sn
+ :=

{
X ∈ Rn×n|X = XT , X ⪰ 0

}
be the set of symmetric, positive semidefinite matrices in n dimensions. We denote the component-wise
application of a function with an underscore as specified in Notation 1. For a covariance matrix Σ ∈ Sn

+
consider the following function

gΣ : Rn −→ R+

α = (α1, · · · , αn) 7→

{∏n
i=1

(
1

1+cos(αi)

)
e− 1

2 tan( α
2 )T Σ−1 tan( α

2 ), α ∈ Rn \ {π + 2πk |k ∈ N}
0, α ∈ {π + 2πk |k ∈ N}

.

Note that gΣ is continuous and periodic. For a covariance matrix Σ ∈ Sn
+ we define the shifted inverse

stereographic normal density of center µ ∈ [−π, π[n as

fΣ,µ : [−π, π[n −→ R+

α = (α1, · · · , αn) 7→ C · gΣ(α− µ), (4)

where
C = (2π)− n

2 det (Σ)− 1
2 .

is the normalization constant. For the sake of brevity, we refer to the density in equation 4 by the acronym
SISND (shifted inverse stereographic normal density).

Depending on the covariance matrix Σ ∈ Rn×n the density fΣ,µ in 4 can be either unimodal or multimodal
(see Figure 2). In fact, the eigenvalues of Σ determine the modality, as specified in the following theorem:
Theorem 1. Let

A :=
{

Σ ∈ Sn
+|λmax (Σ) ≤ 0.5

}
(5)

be the set of SPD matrices with all eigenvalues being less or equal than 0.5. For Σ ∈ Sn
+, µ ∈ [−π, π[n let

fΣ,µ be defined as in Definition 1. Then fΣ,µ is unimodal if and only if Σ ∈ A.

Proof. See Appendix F
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Figure 2: The inverse stereographic normal density as introduced in Definition 1 can be either unimodal
or multimodal depending on the eigenvalues of the covariance matrix Σ. In this visualization we denoted
Σ = σ2. The density is unimodal if and only if σ2 ≤ 0.5.

2.3 Fitting mixtures of SISND

Let m ∈ N be the number of mixture components. The parameter space is given by

Θ =
{

(wi,Σi, µi)m
i=1 ∈

(
R+ × Rn×n × Rn

)m |w1 + · · · + wm = 1
}
.

For θ = (wi,Σi, µi)m
i=1 ∈ Θ we define the mixture density

pθ =
m∑

i=1
wi · fΣi,µi .

Given samples x1, . . . , xk ∈ [−π, π[n, k ∈ N, the maximum likelihood estimate

θML := arg max
θ∈Θ

k∏
i=1

pθ(xi) = arg max
θ∈Θ

k∑
i=1

log (pθ(xi))

is approximated via gradient descent. We initialize the means (µi)m
i=1, by first performing k-means clustering

on the embedding of the toroidal data into a higher dimensional space. Let

ϕ : [−π, π[n −→ R2n

(α1, · · · , αn) 7→ (cos(α1), sin(α1), . . . , cos(αn), sin(αn)) . (6)

be the embedding of the n-dimensional toroidal data into R2n. Applying k-means clustering we obtain the
cluster centers c1, . . . , ck ∈ R2n. We normalize c1, . . . , ck to be on the torus and transform back to the
angular representation: For i ∈ {1, . . . , n} and ci = (ci,1, . . . , ci,2n), define the initial centers
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µi := ϕ−1

 ci,1√
c2

i,1 + c2
i,2

,
ci,2√

c2
i,1 + c2

i,2

, . . . ,
ci,2n−1√

c2
i,2n−1 + c2

i,2n

,
ci,2n√

c2
i,2n−1 + c2

i,2n

 .

Empirically we found it beneficial to restrict the learning to the set of unimodality A (see 5) of covariance
matrices of eigenvalues less or equal than 1

2 . To this end, we parametrize the covariance matrices by a
diagonal decomposition

Σ = QΛQT ,

where Q ∈ SO(n) and Λ ∈ Rn×n is diagonal, s.th. 0 ≤ Λi,i ≤ 0.5 for i ∈ {1, . . . , n} . The special orthogonal
group SO(n) can be parameterized via the set of skew symmetric matrices so(n) :=

{
A ∈ Rn×n |AT = −A

}
,

since the map

ψ : so(n) −→ SO(n)
A 7→ exp(A) (7)

is surjective (see Theorem 18.1 in Gallier (2011) for a proof). We note that for small eigenvalues the SISND
approximates the wrapped normal distribution (see Figure 7 and compare Selvitella (2019)).

3 Experiments

In this section we demonstrate the flexibility of the suggested model by applying it to several examples. We
start with two rather simple target distributions in 3 and 2 dimensions (wind direction data and a special
case of the bivariate von Mise distribution) and then consider two more complex distributions in 6 and 18
dimensions (the backbone torsions of alanine tetrapeptide and chignolin). For the latter two the distribution
fit is quantitatively evaluated by comparison against a baseline model.

3.1 Wind direction data

We first consider a small trivariate data set consisting of 1, 682 observations of wind directions available
as dataset ”WindDirectionsTrivariate” from the R package CircNNTSR (see Fernández-Durán & Gregorio-
Domínguez (2016)). The measurements were taken at three different locations (San Agustin in the north,
Pedregal in the southwest, and Hangares in the southeast) of the Mexico valley between January 1, 1993
and February 29, 2000. We display the 2 dimensional marginal distributions of the data as well as a fitted
mixture model consisting of 50 components of SISND in Figure 8 of Appendix A.

3.2 The Sine model

The Sine model was introduced in Mardia et al. (2007) as a special case of the bivariate von Mises distribution
with analytically known normalization constant. The density function is given by

fS(α1, α2) = 1
C

exp (κ1 cos(α1 − µ1) + κ2 cos(α2 − µ2) + λ sin(α1 − µ1) sin(α2 − µ2)) ,

where

C = 4π2
∞∑

m=0

(
2m
m

)(
λ2

4κ1κ2

)m

Im(κ1)Im(κ2),

and Im is the modified Bessel function of the first kind and order m ∈ N. We chose κ1 = 0.8, κ2 = 1.5, µ1 =
µ2 = 3.0, λ = 2.5, drew 1,000,000 samples and fitted a mixture of SISND mixture of 5 components. The
density plots are shown in Figure 9 of Appendix A.
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3.3 Protein backbone data

In the following we analyze the fitting performance of mixtures of SISND for a varying number of components.
A mixture model consisting of independent joint distributions of von Mises distributions serves as a baseline
(compare Appendix C for a formal definition). We consider two different target distributions of torsion
angles of protein backbones.

The first example is the distribution of 6 torsion angles determining the backbone conformations of alanine
tetrapeptide. We generated the data by classical MD simulations at a temperature of 300 K with 2,000,000
iterations.

The second example is chignolin, a protein consisting of 10 amino acids, the backbone conformation can
be expressed in terms of 18 torsion angles. The data consists of 2,000,000 samples and was obtained from
Culubret & Fabritiis (2021) and generated using extensive MD simulations at 350 K (see Culubret & Fabritiis
(2021) for more algorithmic and parameter details).

We evaluate the quality of the model fit in terms of the estimated Kullback-Leibler divergence. Since the
underlying probability density p is unknown, we approximate the Kullback-Leibler divergence DKL (p∥q) by
the estimator introduced in equation (11) of Definition 2 in the Appendix.

Mixture models of increasing number of components are fitted by gradient descent optimization to approxi-
mate the empirical distribution of the torsion angles. Training was performed on a GPU of 24 GB memory
(GeForce RTX 3090) with a batch size of 40000 for 150 epochs.

In Figure 3 we compare on alanine tetrapeptide the estimated KL divergence for mixture models of an
increasing number of components consisting once of SISND and once of independent joint distributions of
von Mises distributions. We observe that the SISND mixture model outperforms the baseline and converges
substantially faster. For more than 100 components the SISND mixture seems to saturate, while the baseline
is not reaching that value even for 300 components.

Similarly, the Figure 4 displays the divergence results for chignolin. The evaluation measure indicates that
the fitting performance might still further improve for both models taking more than 300 components,
reflecting the complexity of the target distribution. The mixture of SISND again significantly outperforms
the baseline for all numbers of components.

Finally, we visualize the distribution fit of the SISND mixture of 300 components by TICA plots. TICA
(Time-lagged Independent Component Analysis) was first suggested by Molgedey & Schuster (1994) and
introduced into the field of molecular dynamics and computational chemistry by Pérez-Hernández et al.
(2013) and Schwantes & Pande (2013). Similarly to PCA, TICA provides an orthonormal basis of the n ∈ N
dimensional vector space, and the projection onto the subspace spanned by the first N ∋ m ≤ n basis vectors
constitutes a dimensionality reduction technique. However, in contrast to PCA, TICA requires time series
data and the basis vectors are chosen as directions of maximal autocorrelation of the time series. The latter
is usually termed as TICA defining the successive subspaces of ”maximally slow change” in the data.

A TICA plot visualizes the projection onto the first two TICA basis vectors. To create TICA plots for our
data, we first apply the transformation ϕ as in term (6) to account for periodicity in our data. In Figures
5 and 6 we display TICA plots for alanine tetrapeptide and chignolin respectively. In both figures the right
plot shows the empirical distribution of torsion angles obtained from MD simulations, while the left plot
displays the distribution fit of a mixture consisting of 300 components. While for alanine tetrapeptide the
learned distribution almost perfectly matches the empirical distribution, we observe small differences for
chignolin for some areas of lower probability density (note the logarithmic color scale). Overall we note that
both figures indicate that the empirical distributions were well fitted.

4 Conclusion

We introduced the shifted inverse stereographic normal distributions (SISND) as a flexible distribution
family on the hypertorus, inherently accounting for its topology. We identified unimodality conditions for
the proposed distribution by mathematically proving that the density possesses a unique maximum if and
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Figure 3: Comparison of the quality of the distribution fit (alanine tetrapeptide backbone torsion angles) of
mixtures of ISND vs mixtures of independent von Mises for increasing number of mixture components.

Figure 4: Comparison of the quality of the distribution fit (chignolin backbone torsion angles) of mixtures
of isnd vs mixtures of independent von mises for increasing number of mixture components.
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Figure 5: TICA plots for alanine tetrapeptide. Left: Fitted distribution consisting of 300 mixture compo-
nents. Right: target distribution, obtained from MD simulations.

Figure 6: TICA plots for chignolin. Left: Fitted distribution consisting of 300 mixture components. Right:
target distribution, obtained from MD simulations.

only if all eigenvalues of the covariance matrix are less than or equal to 0.5. By fitting mixtures of SISND
to toroidal data for several examples we demonstrated the applicability of the model. For the example of
protein backbones in 6 and 18 dimensions, the fitting performance was verified in terms of the KL-divergence,
compared against a baseline model and was visualized in TICA plots. In future work mixtures of shifted
inverse stereographic normal distributions might serve as expressive prior distributions for normalizing flow
models, enabling a refined learning of densities on the high dimensional hypertorus.
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Appendix A Graphics

Figure 7: Density visualization on the 2 dimensional torus. One component of a SISND (a) was fitted to
a wrapped normal distribution (b). Note that for small eigenvalues, the SISND behaves similarly to the
wrapped normal distribution.

Figure 8: Comparison of marginal distributions of wind direction data. A mixture model of 50 components
(b) was fitted to the data distribution (a).
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Figure 9: Density visualization of a 5 components mixture SISND fitted to the Sine model (see Mardia et al.
(2007).

Appendix B Notation

Let us agree to the following notation:

Notation 1. Given a subset U ⊂ R and a function g : U −→ R, we denote by

g : Un −→ Rn (8)
(x1, · · · , xn) 7→ (g(x1), · · · , g(xn)) (9)

the component-wise application of the function g to a vector (x1, . . . , xn) ∈ Un.

Notation 2. For d = (d1, . . . , dn) ∈ Rn denote by

Diag(d) :=


d1 0 · · · 0
0 d2 · · · 0
...

...
. . .

...
0 0 · · · dn

 ∈ Rn×n

the diagonal matrix of d.

Notation 3. For any hermitian matrix S ∈ Cn×n denote by (λi(S))n
i=1 the decreasingly ordered sequence of

eigenvalues of S (i.e. λ1(S) ≥ · · · ≥ λn(S)).

Appendix C Mixture of independent joint distribution of von Mises distributions

As a baseline in the example 3.3 we use a mixture model of independent joint distribution of von Mises
distributions. Formally, in n ∈ N dimensions for µ = (µ1, · · · , µn) ∈ [−π, π[n and κ = (κ1, · · · , κn) ∈ R+,
the density of one such component is defined as

fµ,κ (α1, · · · , αn) := (fµ1,κ1(α1), · · · , fµn,κn
(αn)) , (10)

where fµi,κi
(αi), i ∈ 1, · · · , n is the von Mises density as defined in (1).

We refer to a mixture model consisting of m ∈ N components of the form (10) as mixture of independent
joint distributions of von Mises distributions.

13
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Appendix D Estimation of the Kullback-Leibler divergence

Definition 2 (Kullback-Leibler divergence estimator). Let d ∈ N and p : Rd → R+ be a density on
Rd. For n ∈ N let

xp
1, · · · , xp

n
i.i.d∼ p

be i.i.d. samples from p and define

X n
p := {xp

1, · · · , xp
n}

to be the set of samples. For x ∈ X n
p , let

dX n
p \{x}(x) := min

y∈X n
p \{x}

∥x− y∥2

be the nearest neighbor distance of x in X n
p . We define an estimator for the Kullback-Leibler divergence as

D̂n
KL (p∥q) := 1

n

∑
x∈X n

p

(
log
(
p̂n(x)
q(x)

))
+ Γ′(1), (11)

where

p̂n(x) :=
Γ
(

d
2 + 1

)
(n− 1)π d

2
· 1

(dX n
p \{x}(x))d

and Γ : R+ −→ R+ is the gamma function. Note that the derivative of the gamma function at one, denoted
by Γ′(1), corresponds to the negative Euler-Mascheroni constant. From Theorem 2 and Corollary 1 in Perez-
Cruz (2008) it follows

D̂n
KL (p∥q) a.s.−→

n→∞
DKL (p∥q)

if p, q are absolutely continuous.

Appendix E Lemmas

Lemma 1. Let f, g : Rm −→ Rn be two differentiable functions. Let

h : Rm −→ R
x 7→ ⟨f(x), g(x)⟩

be the standard scalar product of f and g. Then

Dh(x) = f(x)TDg(x) + g(x)TDf (x).

Proof. This can be easily verified by applying the chain rule on partial derivatives of h.

Lemma 2. Let Σ ∈ Sn
+. The differential of fΣ,0 (see Definition 1) is given by

DfΣ,0(α) = fΣ,0(α) · tan
(α

2

)T
(
In − 1

2Σ−1 Diag
(

1
cos2( α

2 )

))

14
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Proof. First note that by Lemma 1 we find

d

dα

(
tan

(α
2

)T

Σ−1tan
(α

2

))
= tan

(α
2

)T

Σ−1

(
1
2 Diag

(
1

cos2
(

α
2
)))

+
(

Σ−1tan
(α

2

))T
(

1
2 Diag

(
1

cos2
(

α
2
)))

= tan
(α

2

)T

Σ−1

(
Diag

(
1

cos2
(

α
2
))) (12)

Furthermore, note that

d

dα

(
n∏

i=1

(
1

1 + cos(αi)

))
= tan

(α
2

)T n∏
i=1

(
1

1 + cos(αi)

)
. (13)

Using equations (12), (13) and the product rule, we find

DfΣ,0(α) = d

dα

(
C ·

n∏
i=1

(
1

1 + cos(αi)

)
e− 1

2 tan( α
2 )T Σ−1 tan( α

2 )
)

= C
d

dα

(
n∏

i=1

(
1

1 + cos(αi)

))
e− 1

2 tan( α
2 )T Σ−1 tan( α

2 )

+ C

n∏
i=1

(
1

1 + cos(αi)

)
d

dα
e− 1

2 tan( α
2 )T Σ−1 tan( α

2 )

= C

n∏
i=1

(
1

1 + cos(αi)

)
e− 1

2 tan( α
2 )T Σ−1 tan( α

2 ) · tan
(α

2

)T

·

(
In − 1

2Σ−1 Diag
(

1
cos2

(
α
2
)))

= fΣ,0(α) · tan
(α

2

)T
(
In − 1

2Σ−1 Diag
(

1
cos2( α

2 )

))
,

where
C = (2π)− n

2 det (Σ)− 1
2 .

Lemma 3. The Hessian matrix of fΣ,0 at α = 0 is given by

HfΣ,0(0) = (2π)− n
2 det (Σ)− 1

2

(
1
2

)n+1
·
(
In − 1

2Σ−1
)

(14)

Proof. For the sake of clarity, let us define

h(α) :=
(
In − 1

2 Diag
(

1
cos2( α

2 )

)
Σ−1

)
tan

(α
2

)
,

hence
gradfΣ,0

(α) = fΣ,0(α) · h(α)

15
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The Hessian matrix is the differential of the gradient of fΣ,0

HfΣ,0(0) = DgradfΣ,0
(0)

= fΣ,0(0) ·Dh(0) +DfΣ,0(0) ⊗ h(0)
=

h(0)=0
fΣ,0(0) ·Dh(0),

where ⊗ denotes the Kronecker product. Applying Lemma 1 component-wise and observing that tan(0) = 0,
we find

Dh(0) =
(
In − 1

2 Diag
(

1
cos2(0)

)
Σ−1

)
d

dα
tan (α)

∣∣∣∣
α=0

=
(
In − 1

2Σ−1
)

1
2 Diag

(
1

cos2( α
2 )

)∣∣∣∣
α=0

= 1
2

(
In − 1

2Σ−1
)

(15)

Moreover it holds

fΣ,0 (0) = (2π)− n
2 det (Σ)− 1

2 ·
(

1
2

)n

. (16)

Plugging equations (15),(16) into (14) completes the proof.

Lemma 4 (Weyl inequality). Let n ∈ N and for any hermitian matrix S ∈ Cn×n denote by (λi(S))n
i=1 the

decreasingly ordered eigenvalues of S (i.e. λ1(S) ≥ · · · ≥ λn(S)). Let A,B ∈ Cn×n be Hermitian matrices.
Then for any i, j ∈ {1, . . . , n} with i+ j ≤ n+ 1 it holds

λi+j−1(A+B) ≤ λi(A) + λj(B). (17)

Appendix F Proof of main theorem

Theorem 1. Let
A :=

{
Σ ∈ Sn

+|λmax (Σ) ≤ 0.5
}

(5)

be the set of SPD matrices with all eigenvalues being less or equal than 0.5. For Σ ∈ Sn
+, µ ∈ [−π, π[n let

fΣ,µ be defined as in Definition 1. Then fΣ,µ is unimodal if and only if Σ ∈ A.

Proof. Obviously, the parameter µ ∈ [−π, π[n only shifts the density function, s.th. the number of modes
only depends on Σ ∈ Sn

+ and we may assume µ = 0. First, we observe that fΣ,0 is point-symmetric around
0 ∈ Rn:

∀α ∈ [−π, π[n : fΣ,0(α) = fΣ,0(−α). (18)

Hence, the function fΣ,0(α) is unimodal if and only if 0 ∈ [−π, π[n is a maximum and is the unique maximum.

Let us first assume Σ ∈ A. Note that 0 ∈ [−π, π[n being the unique maximum of fΣ,0(α) is equivalent to

DfΣ,0(α) = 0, if α = 0 (19)
DfΣ,0(α) ̸= 0, if α ∈ ]−π, π[n \ {0} , (20)
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since fΣ,0(α) is differentiable in ]−π, π[n and does not take its maximum at α = −π. By Lemma 2, the
differential is given by

DfΣ,0(α) = fΣ,0(α) · tan
(α

2

)T
(
In − 1

2Σ−1 Diag
(

1
cos2( α

2 )

))

= fΣ,0(α) · tan
(α

2

)T

Diag
(

cos2
(α

2

))
− 1

2Σ−1︸ ︷︷ ︸
A(α):=

Diag
(

1
cos2( α

2 )

)

The gradient (i.e. the transposed differential) is thus given by

gradfΣ,0
(α) = fΣ,0(α) · Diag

(
1

cos2
(

α
2
))A(α) · tan

(α
2

)
. (21)

Since tan (0) = 0, we find gradfΣ,0
(0) = 0 which shows (19). To show (20), first observe that (21) implies

∀α ∈ ]−π, π[n \ {0} : gradfΣ,0
(α) = 0 =⇒ det (A(α)) = 0. (22)

We will now use Weyl’s inequality (Lemma 4, for a proof see for example section 5.1 of Helmke & Rosenthal
(1995)) on eigenvalues to show λ1(A(α)) < 0 which results in det (A(α)) ̸= 0 and thus by (22) shows
gradfΣ,0

(α) ̸= 0.

By equation (17), we find

λ1 (A(α)) ≤ λ1

(
Diag

(
cos2

(α
2

)))
+ λ1

(
−1

2Σ−1
)
. (23)

Since we assumed α ∈ ]−π, π[n \ {0}, it holds

λ1

(
Diag

(
cos2

(α
2

)))
< 1. (24)

Furthermore Σ ∈ A implies

λ1

(
−1

2Σ−1
)

= −1
2λn

(
Σ−1) = − 1

2 · λ1 (Σ) ≤ −1. (25)

Combining equations (23),(24),(25) we deduce

λ1 (A(α)) < 0,

which proves det(A(α)) ̸= 0 and hence by (22) we find gradfΣ,0
(α) ̸= 0.

We now show that fΣ,0 is not unimodal for Σ /∈ A. By Lemma 3, the Hessian matrix of fΣ,0 is given by

HfΣ,0(0) = (2π)− n
2 det (Σ)− 1

2

(
1
2

)n+1
·
(
In − 1

2Σ−1
)
.

Hence

λ1

(
HfΣ,0(0)

)
= (2π)− n

2 det (Σ)− 1
2

(
1
2

)n+1(
1 − 1

2λn

(
Σ−1))

= (2π)− n
2 det (Σ)− 1

2

(
1
2

)n+1(
1 − 1

2
1

λ1 (Σ)

)
.
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We conclude

∀i ∈ {1, · · · , n} : λi

(
HfΣ,0(0)

)
≤ 0 ⇐⇒ λ1

(
HfΣ,0(0)

)
≤ 0

⇐⇒ λ1 (Σ) ≤ 1
2

⇐⇒ ∀i ∈ {1, · · · , n} : λi (Σ) ≤ 1
2 .

Thus, Σ /∈ A implies that α = 0 is not a maximum of fΣ,0, which by the symmetry argument in the context
of (18) shows multimodality.

18


	Introduction
	Methods
	Stereographic projection
	Inverse stereographic normal distribution
	Fitting mixtures of SISND

	Experiments
	Wind direction data
	The Sine model
	Protein backbone data

	Conclusion
	Graphics
	Notation
	Mixture of independent joint distribution of von Mises distributions
	Estimation of the Kullback-Leibler divergence 
	Lemmas
	Proof of main theorem

